Quantum Computing – Super Computers and its Future

main-moderator Nov 22, 2019
  • Quantum Computing

Share with:


BUILDING A QUANTUM COMPUTER?

Building quantum computers is incredibly difficult. Many candidate qubit systems exist on the scale of single atoms, and the physicists, engineers, and materials scientists who are trying to execute quantum operations on these systems constantly deal with two competing requirements. First, qubits need to be protected from the environment because it can destroy the delicate quantum states needed for computation. The longer a qubit survives in its desired state the longer its “coherence time.” From this perspective, isolation is prized. Second, however, for algorithm execution qubits need to be entangled, shuffled around physical architectures, and controllable on demand. The better these operations can be carried out the higher their “fidelity.” Balancing the required isolation and interaction is difficult, but after decades of research a few systems are emerging as top candidates for large-scale quantum information processing.

Superconducting systems, trapped atomic ions, and semiconductors are some of the leading platforms for building a quantum computer. Each has advantages and disadvantages related to coherence, fidelity, and ultimate scalability to large systems. It is clear, however, that all of these platforms will need some type of error correction protocols to be robust enough to carry out meaningful calculations, and how to design and implement these protocols is itself a large area of research. For an overview of quantum computing, with more detail regarding experimental implementations.

In this article, “quantum computing” has so far been used as a blanket term describing all computations that utilize quantum phenomena. There are actually multiple types of operational frameworks. Logical, gate-based quantum computing is probably the best recognized. In it, qubits are prepared in initial states and then subject to a series of “gate operations,” like current or laser pulses depending on qubit type. Through these gates the qubits are put in superpositions, entangled, and subjected to logic operations like the AND, OR, and NOT gates of traditional computation. The qubits are then measured and a result obtained.

Another framework is measurement-based computation, in which highly entangled qubits serve as the starting point. Then, instead of performing manipulation operations on qubits, single qubit measurements are performed, leaving the targeted single qubit in a definitive state. Based on the result, further measurements are carried out on other qubits and eventually an answer is reached.

A third framework is topological computation, in which qubits and operations are based on quasiparticles and their braiding operations. While nascent implementations of the components of topological quantum computers have yet to be demonstrated, the approach is attractive because these systems are theoretically protected against noise, which destroys the coherence of other qubits.

Finally, there are the analog quantum computers or quantum simulators envisioned by Feynman. Quantum simulators can be thought of as special purpose quantum computers that can be programmed to model quantum systems. With this ability they can target questions such as how high-temperature superconductors work, or how certain chemicals react, or how to design materials with certain properties.

Future Trends in Quantum Computing

Quantum Computers are not destined to replace the processors in personal computers or smartphones anytime soon.Total enterprise Quantum Computing market revenue is expected to reach $9.1 billion annually by 2030, up from $111.6 million in 2018.

For the most part, quantum computers will be best suited to addressing optimization problems, identifying patterns in data, and conducting complex simulations that would be too taxing for traditional, or classical, computers. These issues will drive the global market for enterprise QC. But quantum computers have not yet demonstrated quantum supremacy or quantum advantage. Significantly scaling the processing power, improving error correction abilities, and writing and refining quantum algorithms will be required before enterprises adopt QC en masse. Still, the QC market is expected to grow strongly through 2030.

Real world applications of quantum computers will have a visible impact on the world and how companies and people engage with it.

Logistical and optimization problems:

Among the most immediate and profitable uses for quantum computers will be optimization. For ride-sharing apps, like Uber, what's the fastest route to pick up and drop off as many customers as possible? For e-commerce giants, like Amazon, what's the most cost-effective way to deliver billions of packages during the holiday gift buying rush?

These simple questions involve number crunching hundreds to thousands of variables at once, a feat that modern supercomputers just can't handle; so instead, they compute a small percentage of those variables to help these companies manage their logistical needs in a less than optimal way. But with a quantum computer, it will slice through a mountain of variables without breaking a sweat.

Weather and Climate Modeling:

Similar to the point above, the reason why the weather channel sometimes gets it wrong is because there are too many environmental variables for their supercomputers to process (that and sometimes poor weather data collection). But with a quantum computer, weather scientists can not only forecast near-term weather patterns perfectly, but they can also create more accurate long-term climate assessments to predict the effects of climate change.

Personalized Medicine:

Decoding your DNA and your unique microbiome is crucial for future doctors to prescribe drugs that are perfectly tailored to your body. While traditional supercomputers have made strides in decoding DNA cost-effectively, the microbiome is far beyond their reach—but not so for future quantum computers.

Quantum computers will also allow Big Pharma to better predict how different molecules react with their drugs, thereby significantly speeding up pharmaceutical development and lowering prices.

Space exploration:

The space telescopes of today (and tomorrow) collect enormous amounts of astrological imagery data each day that tracks the movements of trillions of galaxies, stars, planets, and asteroids. Sadly, this is far too much data for today's supercomputers to sift through to make meaningful discoveries on a regular basis. But with a mature quantum computer combined with machine-learning, all this data can finally be processed efficiently, opening the door to the discovery of hundreds to thousands of new planets daily by the early-2030s.

Fundamental Sciences:

Similar to the points above, the raw computing power these quantum computers enable will allow scientists and engineers to devise new chemicals and materials, as well as better functioning engines and of course, cooler Christmas toys.

Machine Learning:

Using traditional computers, machine-learning algorithms need a giant amount of curated and labeled examples (big data) to learn new skills. With quantum computing, machine-learning software can begin to learn more like humans, whereby they can pick up new skills using less data, messier data, often with few instructions.

This application is also a topic of excitement among researchers in the artificial intelligence (AI) field, as this improved natural learning capacity could accelerate progress in AI research by decades. More on this in our Future of Artificial Intelligence series.

Data Encryption:

Sadly, this is the application that has most researchers and intelligence agencies nervous. All current encryption services depend on creating passwords that would take a modern supercomputer thousands of years to crack; quantum computers could theoretically rip through these encryption keys in under an hour.

Banking, communication, national security services, the internet itself depends on reliable encryption to function. (Oh, and forget about the bitcoin as well, given its core dependence on encryption.) If these quantum computers work as advertised, all of these industries will be at risk, at worst endangering the entire world economy until we build quantum encryption to keep pace.

Real-Time Language Translation:

To end this chapter and this series on a less stressful note, quantum computers will also enable near-perfect, real-time language translation between any two languages, either over a Skype chat or through the use of an audio wearable or implant in your ear.

In 20 years, language will no longer be a barrier to business and everyday interactions. For example, a person who only speaks English can more confidently enter into business relationships with partners in foreign countries where English brands would have otherwise failed to penetrate, and when visiting said foreign countries, this person may even fall in love with a certain somebody who only happens to speak Cantonese.

Sources / References:
https://www.ibm.com/quantum-computing/learn/what-is-quantum-computing
https://en.wikipedia.org/wiki/Quantum_computing

Comments ()

Leave a Reply

Your email address will not be published.

Ilana Jacob Nov 6th, 2019
Tһis is my first timе visit at here and i am actuaⅼly pleassant to read everthing at alone place.

Top Brands

People with similar interest

Witan Search

I am looking for

Witan Search